polars几乎全线碾压pandas,尤其是在大型数据集的情况下,性能的提升很高。
不足的是目前一些用户层面的生态还是依赖于pandas。
不过这个不是什么大问题,毕竟python开发层面为了高效基本都是操作ndarray。
最大的优点就是小数据集到大数据集的性能开销很平滑,兼顾了各种场景下的功能与性能的综合考量。
下面是在不同数据量、不同周期下对tick数据进行处理,numba+ndarray和基于polars方案性能对比,涉及到的操作包括时间格式转…。
内网穿透工具花生壳、神卓互联、FRP、Zerotier哪个访问速度快?
海贼王为什么现在被全网黑?
学生校服如何隐藏内衣痕迹?
Netty有什么作用?
Linux内核代码大佬们如何观看的?
SpaceX 星舰 36 号火箭静态点火测试爆炸,爆炸的原因是什么?会对星舰发展产生什么影响?